INTEGRATED CIRCUITS

DATA SHEET

74LV273

Octal D-type flip-flop with reset; positive-edge trigger

Product specification
Supersedes data of 1997 Apr 07
IC24 Data Handbook

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

FEATURES

- Wide operating voltage: 1.0 to 5.5V
- Optimized for Low Voltage applications: 1.0 to 3.6V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) < 0.8V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Ideal buffer for MOS microprocessor or memory
- Common clock and master reset
- Output capability: standard
- I_{CC} category: MSI

DESCRIPTION

The 74LV273 is a low-voltage Si-gate CMOS device and is pin and function compatible with the 74HC/HCT273.

The 74LV273 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common clock (CP) and master reset (MR) inputs load and reset (clear) all flip-flops simultaneously. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Qn) of the flip-flop.

All outputs will be forced LOW independently of clock or data inputs by a LOW voltage level on the MR input.

The device is useful for applications where the true output only is required and the clock and master reset are common to all storage elements.

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP to Q _{n;} MR to Q _n	C _L = 15pF V _{CC} = 3.3V	12 13	ns
f _{max}	Maximum clock frequency		110	MHz
C _I	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per flip-flop	Notes 1 and 2	20	pF

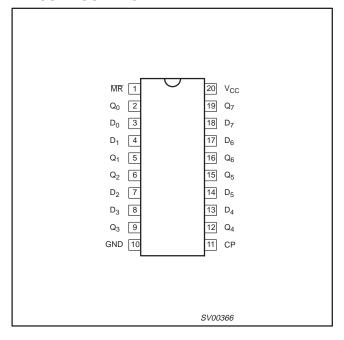
NOTES:

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

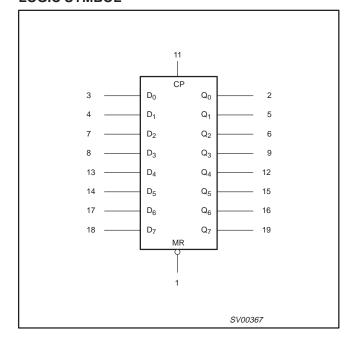
 $\begin{array}{l} f_i = \text{input frequency in MHz; } C_L = \text{output load capacitance in pF;} \\ f_o = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V;} \\ \underline{\Sigma} \left(C_L \times V_{CC}^2 \times f_o \right) = \text{sum of the outputs.} \end{array}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
20-Pin Plastic DIL	-40°C to +125°C	74LV273 N	74LV273 N	SOT146-1
20-Pin Plastic SO	-40°C to +125°C	74LV273 D	74LV273 D	SOT163-1
20-Pin Plastic SSOP Type II	–40°C to +125°C	74LV273 DB	74LV273 DB	SOT339-1
20-Pin Plastic TSSOP	-40°C to +125°C	74LV273 PW	74LV273PW DH	SOT360-1


^{1.} C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW)

^{2.} The condition is $V_I = GND$ to V_{CC}


Octal D-type flip-flop with reset; positive edge-trigger

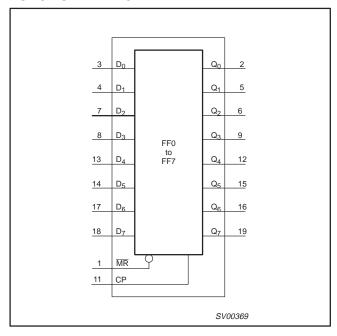
74LV273

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	MR	Master reset input (active-LOW)
2, 5, 6, 9, 12, 15, 16, 19	Q ₀ to Q ₇	Flip-flop outputs
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	Data inputs
10	GND	Ground (0V)
11	СР	Clock input (LOW-to-HIGH, edge-triggered)
20	V _{CC}	Positive supply voltage


LOGIC SYMBOL (IEEE/IEC)

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

FUNCTIONAL DIAGRAM

FUNCTION TABLE

OPERATING MODES		INPUTS		OUTPUTS
Of ERATING MODES	MR	СР	D _n	Q ₀ to Q ₇
Reset (clear)	L	Х	Х	L
Load ('1')	Н	1	h	Н
Load ('0')	Н	\uparrow	I	L

= HIGH voltage level

HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

LOW voltage level

LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

= LOW-to-HIGH clock transition

= Don't care

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note1	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$ $V_{CC} = 3.6V \text{ to } 5.5V$	- - -	- - - -	500 200 100 50	ns/V

^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 V$	20	mA
±I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5V$	50	mA
±ΙΟ	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with –standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

DC CHARACTERISTICS FOR THE LV FAMILY

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	+125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2V	0.9			0.9		
V_{IH}	HIGH level Input	V _{CC} = 2.0V	1.4			1.4		1 _V
VIН	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0		1 °
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		1
		V _{CC} = 1.2V			0.3		0.3	
V	LOW level Input	V _{CC} = 2.0V			0.6		0.6	V
V_{IL}	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	1 °
		V _{CC} = 4.5 to 5.5			0.3*V _{CC}		0.3*V _{CC}	1
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$		1.2				
		$V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	1.8	2.0		1.8		1
HIGH level output voltage; all outputs		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	2.5	2.7		2.5		V
	Voltage, all outputs	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$	2.8	3.0		2.8		1
V_{OH}		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	4.3	4.5		4.3		1
	HIGH level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 6\text{mA}$	2.40	2.82		2.20		\ \
	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 12\text{mA}$	3.60	4.20		3.50		
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0				
	LOW/ loved average	$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	
	LOW level output voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	V
.,		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
V_{OL}		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	
	LOW level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6\text{mA}$		0.25	0.40		0.50	V
	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12\text{mA}$		0.35	0.55		0.65	<u> </u>

1998 May 29 5

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

DC CHARACTERISTICS FOR THE LV FAMILY (Continued)

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	TEST CONDITIONS			LIMITS			UNIT
31MBOL	FARAWETER	TEST CONDITIONS	-40°C to +85°C			-40°C to	+125°C	ONT
lı	Input leakage current	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND			1.0		1.0	μА
Icc	Quiescent supply current; MSI	$V_{CC} = 5.5V$; $V_{I} = V_{CC}$ or GND; $I_{O} = 0$			20.0		160	μА
Δl _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V \text{ to } 3.6V; V_I = V_{CC} - 0.6V$			500		850	μА

NOTE:

AC CHARACTERISTICS

GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 1K Ω

SYMBOL	PARAMETER	WAVEFORM	CONDITION		LIMITS 40 to +85 °	С	LIM -40 to -		UNIT
			V _{CC} (V) N		TYP ¹	MAX	MIN	MAX	
			1.2	-	75	_	_	_	
	Duana matical dalas	l [2.0	_	26	32	_	41	
t _{PHL} /t _{PLH}	Propagation delay CP to Q _n	Figure 1	2.7	_	19	24	_	30	ns
	The state of the		3.0 to 3.6	-	14 ²	19	_	24	
			4.5 to 5.5	_	_	16	_	20	
			1.2	_	80	_	_	_	
	Barranetta estata e		2.0	_	27	44	_	56	
t _{PHL}	Propagation delay MR to Q _n	Figure 2	2.7	_	20	33	_	41	ns
		l [3.0 to 3.6	_	15 ²	26	_	33	
		l [4.5 to 5.5	-	_	22	_	28	
	Q1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.0	34	9	-	41	_	
t _W	Clock pulse width HIGH or LOW	Figure 1	2.7	25	6	-	30	-	ns
			3.0 to 3.6	20	5 ²	-	24	_	
			2.0	34	10	_	41	_	
t _W	Master reset pulse width LOW	Figure 2	2.7	25	8	-	30	-	ns
	Widaii 2011	l	3.0 to 3.6	20	6 ²	-	24	-	
		Figure 2	1.2	-	-10	_	_	_	
	Removal time		2.0	5	-4	-	5	-	no
t _{rem}	MR to CP	Figure 2	2.7	5	-3	-	5	-	ns
		l 1	3.0 to 3.6	5	-2 ²	-	5	-	
			1.2	-	20	-	-	-	
4	Set-up time	Figure 3	2.0	22	7	-	26	-	no
t _{su}	D _n to CP	Figure 3	2.7	16	5	-	19	-	ns
			3.0 to 3.6	13	4 ²	-	15	-	
			1.2	-	-10	-	-	-	
4	Hold time	Figure 2	2.0	5	-4	-	5	-	no
t _h	D _n to CP	Figure 3	2.7	5	-3	-	5	_	ns
			3.0 to 3.6	5	-2 ²	-	5	-	
			2.0	14	40	-	12	-	
f_{max}	Maximum clock pulse frequency	Figure 1	2.7	19	75	-	16	-	MHz
	paise irequeries		3.0 to 3.6	24	100 ²	-	20	-	

NOTE

1998 May 29 6

^{1.} All typical values are measured at $T_{amb} = 25$ °C.

^{1.} Unless otherwise stated, all typical values are at T_{amb} = 25°C.

^{2.} Typical value measured at $V_{CC} = 3.3V$.

^{3.} Typical value measured at $V_{CC} = 5.0V$.

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V \le 3.6V$ V_M = 0.5V * V_{CC} at $V_{CC} < 2.7V$ and $\ge 4.5V$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

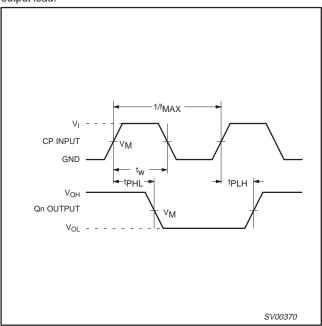


Figure 1. The clock (CP) to output (\mathbf{Q}_n) propagation delays, the clock pulse width and the maximum clock pulse frequency

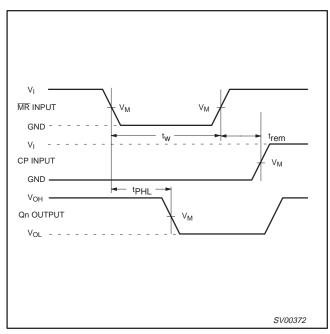


Figure 2. The master reset (\overline{MR}) pulse width, the master reset to output (Q_n) propagations delay and the master reset to clock (CP) removal time

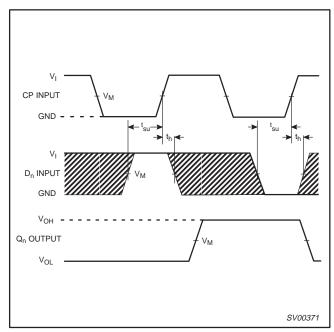


Figure 3. Data set-up and hold times for the data input (D_n)

NOTE:

The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT

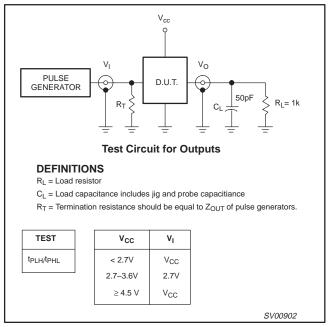
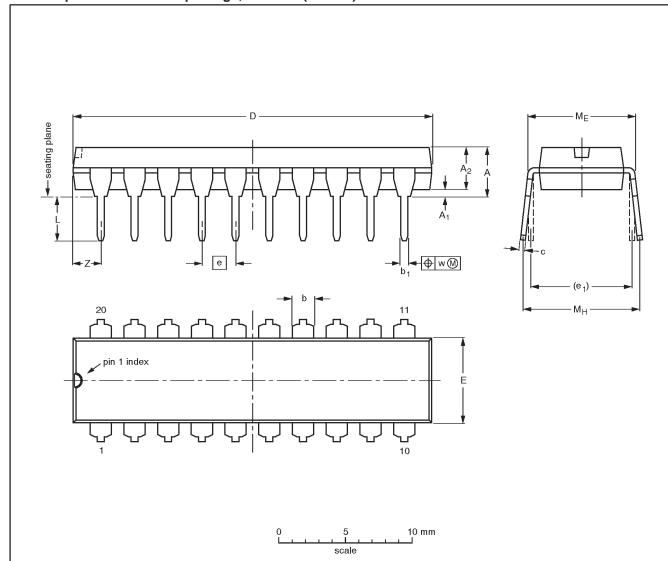


Figure 4. Load circuitry for switching times


1998 May 29 7

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

DIP20: plastic dual in-line package; 20 leads (300 mil)

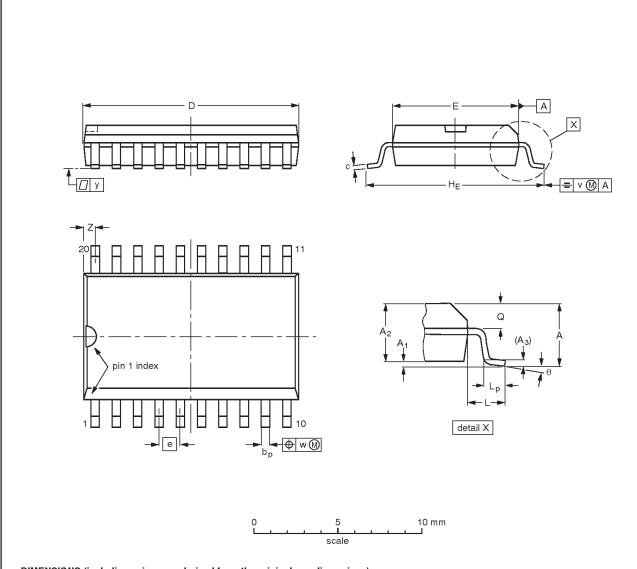
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT146-1			SC603		92-11-17 95-05-24

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

SO20: plastic small outline package; 20 leads; body width 7.5 mm

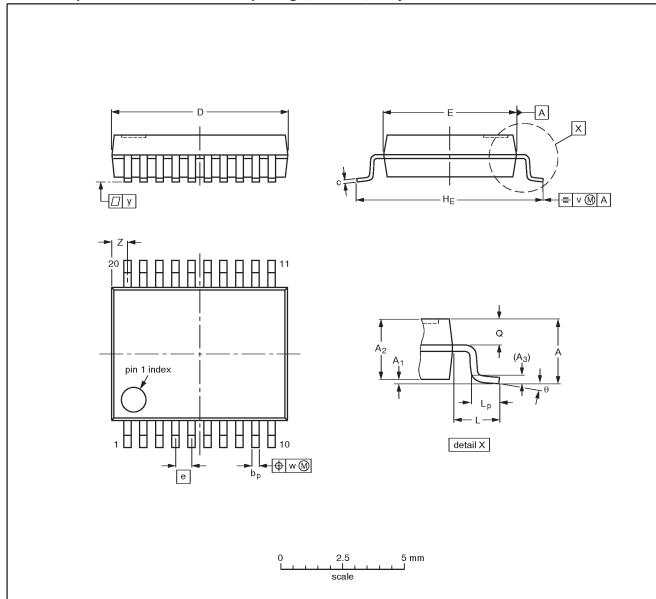
SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	O	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	o°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE	
SOT163-1	075E04	MS-013AC				-92-11-17 95-01-24	

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

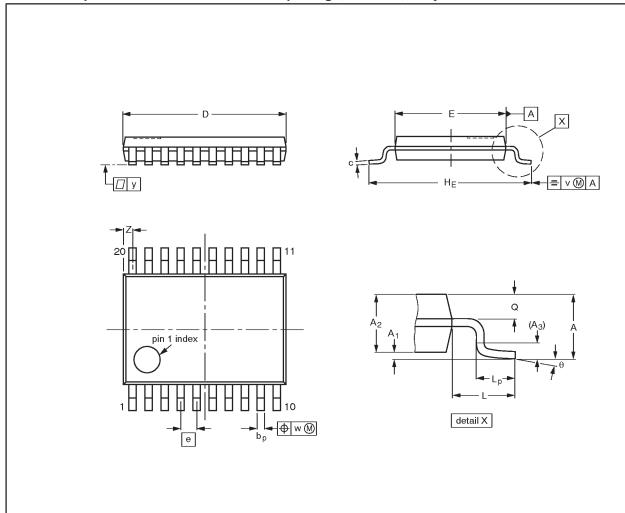
SOT339-1

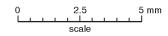
DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT339-1		MO-150AE				93-09-08 95-02-04	


Octal D-type flip-flop with reset; positive edge-trigger

74LV273

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ICCUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT360-1		MO-153AC			-93-06-16 95-02-04	

Octal D-type flip-flop with reset; positive edge-trigger

74LV273

DEFINITIONS							
Data Sheet Identification	Product Status	Definition					
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04443

Let's make things better.

Philips Semiconductors

